Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series LLC LTD Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series LLC LTD : World’s leading Event Organizer

Back

3rd World Congress on Advances in Food Science, Processing and Technology

Tokyo, Japan

Yung-Jia Chan

Yung-Jia Chan

Dayeh University, Taiwan

Title: Characterization of intestinal Caco-2 cell model by the effect of Gracilaria coronopifolia synbiotic

Biography

Biography: Yung-Jia Chan

Abstract

The market contains only limited health care products that combine prebiotics and probiotics. In this study, we developed a marine-based Gracilaria coronopifolia synbiotics and verified the efficacy in intestinal Caco-2 cells to develop functional materials that promote intestinal health and prevent intestinal inflammation. G. coronopifolia was used as red algae prebiotic and Bifidobacterium bifidum, B. longum subsp. infantis, B. longum subsp. longum, Lactobacillus acidophilus and L. delbrueckii subsp. bulgaricus were mixed for the algae synbiotics. G. coronopifolia synbiotics were not toxic to Caco-2 cells and the survival rate was 101% to 117%, for a multiplicative effect on cell survival. After cells were induced by H2O2, the levels of Reactive Oxygen Species (ROS) increased to 151.5%, but after G. coronopifolia symbiotic treatment, decreased to 101.8% to 109.6%. After cells were induced by tumor necrosis factor α, the ROS levels increased to 124.5% but decreased to 57.7% with G. coronopifolia symbiotic treatment. G. coronopifolia synbiotics could effectively inhibit the production of ROS intestinal cells under oxidative stress (induced by H2O2 and TNF-α), which can reduce the damage of cells under oxidative stress. Functioning of intestinal cells could be improved by inhibiting the production of inflammatory factor substances (interleukin-8) with G. coronopifolia symbiotic treatment. Also, gastrointestinal diseases may be retarded by a synbiotic developed from the marine G. coronopifolia to promote intestinal health and prevent intestinal inflammation.